Norcross, GA, USA – 08 January 2020 Micromeritics Instrument Corp., a leader in material characterization technology, is seeing enthusiastic interest from researchers keen to use the new Micromeritics in-situ Catalyst Characterization System (ICCS) to enhance the integrity of heterogeneous catalyst studies by adding new capabilities to existing reaction screening systems. Standard practice is to remove a catalyst from the reactor and transfer it to a separate system for characterization a following a reaction, but this risks environmental contamination and compromising data quality. With the ICCS, a catalyst can be characterized at any point after a reaction, in the reactor, to gain representative data. The broad compatibility of the ICCS makes this extremely valuable insight into reaction, deactivation and regeneration widely accessible. “Researchers use a wide range of different apparatus to assess catalyst performance,” said Dr Simon Yunes, Senior Scientist, Micromeritics, “from in-house glassware units to sophisticated, automated systems such as our Micromeritics Microactivity Effi reactor. Following a reaction, it is desirable to re-quantify defining characteristics such as the number of active catalysts sites to observe any change. This typically means removing the catalyst from the reactor and transferring it to a chemisorption system. There is widespread recognition that this process undermines the integrity of the resulting characterization data, so we’re delighted to be able to offer a solution which so many people can use.” The ICCS can be connected to most existing, flowing test rigs, to deliver an extensive range of well-established catalyst characterization capabilities. The ability to simply add on this functionality enhances the value of existing equipment and makes the ICCS a valuable addition. The characterization techniques it enables include pulsed chemisorption and temperature programmed analyses (reduction, oxidation and desorption) which are applied to measure performance-defining metrics such as number of active sites, metal dispersion and activity under specific conditions. These analyses can be carried out at pressures up to 20 bar, depending on the rating of the attached apparatus, and the conditions of interest. “We’ve had excellent feedback from leaders in the field of catalyst development, who are already using the ICCS to access new information to drive their studies,” said Dr Yunes “A better understanding of the mechanisms of the reaction, catalyst deactivation, and regeneration are crucial for the commercialization of higher performance catalysts. The ICCS is a powerful solution for any researcher looking to efficiently augment and enhance their heterogeneous catalyst characterization strategies.”